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We present a study of Richtmyer–Meshkov flow for elastic materials. This flow, in
which a material interface is struck by a shock wave, was originally investigated for
gases, where growth of perturbations of the interface is observed. Here we consider two
elastic materials in frictionless contact. The governing system of equations comprises
conservation laws supplemented by constitutive equations. To analyse it, we linearize
the equations around a one-dimensional background solution under the assumption
that the perturbation is small. The background problem defines a Riemann problem
that is solved numerically; its solution contains transmitted and reflected shock waves
in the longitudinal modes. The linearized Rankine–Hugoniot condition provides the
interface conditions at the longitudinal and shear waves; the frictionless material
interface conditions are also linearized. The resulting equations, a linear system of
partial differential equations, is solved numerically using a finite-difference method
supplemented by front tracking. In verifying the numerical code, we reproduce growth
of the interface in the gas case. For the elastic case, in contrast, we find that the
material interface remains bounded: the non-zero shear stiffness stabilizes the flow.
In particular, the linear theory remains valid at late time. Moreover, we identify the
principal mechanism for the stability of Richtmyer–Meshkov flow for elastic materials:
the vorticity deposited on the material interface during shock passage is propagated
away by the shear waves, whereas for gas dynamics it stays on the interface.

1. Introduction
The instability, caused by the passage of a shock wave, of an interface between two

gases was first studied by Richtmyer (1960). His theoretical predictions and numerical
calculations were confirmed experimentally by Meshkov (1970), and this type of
instability is therefore named the Richtmyer–Meshkov instability. Since this initial
work, extensive theoretical, numerical and experimental work has been conducted on
the Richtmyer–Meshkov instability. The reader may wish to consult the review article
by Rupert (1992) as well as more recent references (e.g. Grove et al. 1993; Holmes
1994; Yang, Zhang & Sharp 1994; Zhang & Graham 1998).

A schematic illustration of the Richtmyer–Meshkov flow configuration is shown
in figure 1. An incident (left-facing) shock wave impinges on a corrugated material
interface, generating transmitted and reflected waves. The type of the reflected wave
(shock or rarefaction) is determined by the material parameters; figure 1 shows
the case of a reflected shock wave. During the interaction, the material interface is
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Figure 1. An illustration of the Richtmyer–Meshkov flow configuration: (a) the incident
shock wave and material interface before interaction; (b) the interaction between the incident
shock and the interface; (c) waves emerging after interaction.

accelerated by the incident shock wave. This acceleration can cause the corrugations
in the interface to grow in amplitude in an unstable fashion.

In this paper, which is based on the PhD dissertation of J.N.P. (Nam 2001), we
study the behaviour of elastic materials, such as metals, in Richtmyer–Meshkov flow.
(As we will see, the term ‘instability’ is not appropriate for elastic materials, so we use
the word ‘flow’.) In contrast to a gas, an elastic material resists shear strain. Emerging
from the interaction of the shock wave with the material interface are transmitted
and reflected waves in shear modes, as well as longitudinal modes, which leads to a
significant change in the subsequent evolution of the material interface. The tensor
nature of strain requires that the principles of solid mechanics be carried over to the
analysis of the Richtmyer–Meshkov flow.

Just as Richtmyer did in his pioneering work on the Richtmyer–Meshkov instability
for gas dynamics, we start by studying the small-amplitude limit. Our approach is
based on Richtmyer’s analysis for the case of a reflected shock wave, but it also draws
from the refinements of this analysis introduced by Yang et al. (1994). In making
the transition from gas dynamics to elasticity, we have organized the analysis in a
systematic way that facilitates application to general systems of conservation laws.

Concerning related interface instability problems for elastic materials, studies have
already been conducted of Kelvin–Helmholtz and Rayleigh–Taylor instability. Adams
(1995) investigated the instability of a nearly flat contact surface between two
compressible isotropic elastic materials sliding past each other, with a constant
coefficient of kinetic friction, and derived the dispersion relation. The interface is
stabilized when the velocity jump reaches a threshold set by the shear wave speeds.
Plohr & Sharp (1998) considered the acceleration of a nearly flat incompressible
elastic plate and solved a linear initial/boundary-value problem to obtain analytic
formulae for the solutions. The solutions show that irregularities with sufficiently
short wavelengths are stabilized, with the cutoff being related to the plate thickness
and to the ratio of the accelerating pressure difference to the shear modulus.

Shear stiffness has a similar effect in Richtmyer–Meshkov flow: according to our
simulations, the amplitude remains bounded, oscillating around an asymptotic value,
rather than growing linearly with time, as it does for gases; i.e. there is no instability.
Moreover, the frequency of the oscillation increases with the shear stiffness of the
materials.
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An outline of the present paper is as follows. In § 2, we adopt a formulation of
the governing equations for elasticity as a system of conservation laws together with
a thermoelastic equation of state. A conservative formulation (Plohr & Sharp 1988;
Trangenstein & Colella 1991; Plohr & Sharp 1992), as opposed to a conventional
incremental formulation, in which the stress evolves according to a differential
equation, is essential in the present context where material interface and shock jump
conditions must be formulated for two-dimensional configurations of discontinuous
solutions. In § 3, we construct the solution to the uniaxial flow problem in which
a flat shock impinges normally on a flat material interface. This Riemann-problem
solution serves as the background flow about which the Richtmyer–Meshkov flow
is a perturbation. In § 4, we linearize the partial differential equations, along with
the material interface and shock jump conditions, around the background solution,
and we perform some preparatory analysis of the linearized equations in § 5. These
equations also come into play in § 6 when formulating the initial conditions for the
perturbed flow problem, which amounts to a linearized shock polar problem. In § 7,
we describe our numerical scheme. To obtain accurate numerical solutions of the
linearized equations, we implement front tracking of the transmitted and reflected
waves as well as the material interface, using characteristic tracing to provide coupling
from the interior grid points to the fronts. We present the results of numerical
simulations using our code in § 8, and discuss the results in § 9.

2. Governing equations
The dynamical equations for an elastic material consist of a system of conservation

laws along with corresponding jump conditions for discontinuous solutions and
constitutive equations specifying the elastic material response. In this section, we
review these equations.

2.1. Conservation laws

The partial differential equations governing an elastic material in the Eulerian
frame can be written in first-order conservative form (Plohr & Sharp 1988, 1992;
Trangenstein & Colella 1991; Wagner 1996). These conservation laws involve, as field
variables, the deformation gradient tensor, the velocity vector and a thermodynamic
variable, which together characterize the state of the material; and they represent
the physical principles of material continuity, conservation of momentum and
conservation of energy.

To formulate the Eulerian material continuity equation, we first recall the
corresponding equation in the Lagrangian frame (see, e.g. Dafermos 2000). A reference
configuration (for instance, the undeformed configuration) is chosen and each point of
the body is labelled by its material coordinates Xα , α = 1, 2, 3, in this configuration.
The motion of the body is described by a time-dependent map φi specifying the
spatial coordinates xi , i = 1, 2, 3, of each material point Xα at time t:

xi = φi(X, t). (2.1)

In terms of φi , the spatial velocity of the particle Xα is the time derivative V i := φ̇i ,
and the deformation of a small neighbourhood of Xα is characterized by the derivative
F i

α := φi
;α , which is called the deformation gradient tensor. (The overdot denotes

the t-derivative with Xα held fixed, and the semicolon signals differentiation with
respect to the indicated variable.) By equating mixed second partial derivatives of φi ,
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we obtain the conditions

Ḟ i
α − V i

;α = 0, (2.2)

εαβγ F i
β;γ = 0, (2.3)

which guarantee that V i and F i
α are derivatives of a continuous map φi . The curl-free

condition (2.3) is a consequence of (2.2) if it holds at the initial time, so we refer to
the dynamical equation (2.2) as the Lagrangian material continuity equation.

The Eulerian material continuity equation derives from the inverse of the
relationship (2.1), written

Xα = ψα(x, t). (2.4)

The derivative gα
i := ψα

;i , called the inverse deformation gradient tensor, is the
inverse of F i

α , regarded as a function of xi rather than Xα . Taking the time deri-
vative of the identity Xα ≡ ψα(φ(X, t), t), we find that ψα

;t = −gα
kv

k , where
vi(x, t) := V i(φ(x, t), t). Equating the mixed second derivatives of ψα yields the
material continuity equation and the curl-free condition in Eulerian coordinates
(Trangenstein & Colella 1991):(

gα
i

)
;t

+
(
gα

jv
j
)

;i
= 0, (2.5)

εijkgα
j ;k = 0. (2.6)

As in the Lagrangian case, these conditions guarantee that gα
i and vi derive from a

continuous map ψi , and the curl-free condition is an initial-value constraint.
The mass density of the material is ρ(x, t) = ρ0(ψ(x, t))J (x, t)−1, where J =

(det g)−1 is the Jacobian and ρ0(X) is the mass per unit reference volume at material
position Xα . Equations (2.5)–(2.6) imply the conservation of mass equation,

ρ;t + (ρvj );j = 0. (2.7)

To simplify matters, we consider only homogeneous materials; in particular, we
assume that ρ0 is constant throughout each material.

Along with the material continuity equations, the conservation of momentum and
energy equations hold (see e.g. Dafermos 2000):

(ρvi);t + (ρvivj − σ ij );j = 0, (2.8)

(ρe);t + (ρevj − viσ
ij );j = 0. (2.9)

Here σ ij is the Cauchy stress tensor, e = vkv
k/2 + ε is the specific total energy, and ε

is the specific internal energy. (We neglect body forces and heat flow.)
Equations (2.5), (2.8) and (2.9) represent conservation laws for the conserved

quantities gα
i , ρvi and ρe, assuming that the stress tensor σ ij can be expressed

in terms of these quantities. The constitutive relationship that so expresses the stress
tensor is discussed in § 2.2.

2.2. Equation of state

To complete the governing system of conservation laws, we must specify how the stress
tensor σ ij relates to the conserved quantities. We adopt a thermoelastic constitutive
equation satisfying the axioms of locality, entropy production and material frame
indifference (see, e.g. Marsden & Hughes 1983). Such a constitutive equation amounts
to an equation of state,

ε = ε̃(C, η), (2.10)
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relating the specific internal energy ε to the right Cauchy–Green strain tensor C= FT F
and the specific entropy η, which determines the Cauchy stress σ ij and the temperature
θ through the formulae

σ ij = 2ρF i
α

∂ε̃

∂Cαβ

F j
β, (2.11)

θ =
∂ε̃

∂η
. (2.12)

For modelling elastic solids, we assume that ε is the sum of two terms, the volumetric
(or ‘hydrodynamic’) energy and the shear energy. The volumetric energy εh accounts
for the response of the material to changes in volume; it depends on C solely through
the specific volume τ = 1/ρ = J/ρ0, where J 2 = detC. The shear energy, on the other
hand, accounts for the response to shear strain. To measure the shear strain, we define
the volume-preserving part of the right Cauchy–Green tensor (Simo & Hughes 1998),
C̃ = J −2/3C, and the elastic shear distortion, ε, given by

ε2 = 1
2
(tr C̃ − 3). (2.13)

Because det C̃ = 1, the tensor C̃ and therefore ε are unaffected by volume change;
moreover, ε reduces to the usual measure of shear strain (the norm of the deviator
of the symmetric part of the displacement gradient) in the small-strain limit.

Specifically, we follow Walter et al. (1999) in adopting the equation of state

ε = ε̃h(τ, η) + τGε2, (2.14)

where G is the (constant) shear modulus. The resulting Cauchy stress is

σ ij = −pmeanδ
ij + G(dev b̃)ij . (2.15)

Here, pmean = p̃h(τ, η) − Gε2 is the mean pressure, with

p̃h(τ, η) = −∂ε̃h

∂τ
(τ, η) (2.16)

being the hydrodynamic contribution; and dev b̃ = b̃ − tr(b̃)I/3 is the deviatoric,
or trace-free, part of the volume-preserving part of the left Cauchy–Green tensor,
b̃ = J −2/3FFT . In § A.1, we give explicit formulae for ε2 and the components of dev b̃
in terms of the components of g for the case of plane strain that is relevant for the
present paper.

The hydrodynamic part of the equation of state remains to be specified. In sub-
sequent calculations, it proves convenient to replace the entropy by an alternative ther-
modynamic variable. We shall use the hydrodynamic pressure p = p̃h(τ, η). One
advantage of this choice is that an incomplete form (Menikoff & Plohr 1989) of the
hydrodynamic equation of state suffices to close the system of equations. We denote
the solution of the relation p = p̃h(τ, η) by η = η̂h(τ, p) and define

ε̂h(τ, p) = ε̃h(τ, η̂h(τ, p)). (2.17)

Thus the incomplete forms of formulae (2.14) and (2.15) are

ε = ε̂h(τ, p) + τGε2, (2.18)

σ ij = −pmeanδ
ij + G(dev b̃)ij with pmean = p − Gε2. (2.19)
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Then, as a concrete model for the response of a solid to hydrodynamic pressure, we
adopt a stiffened polytropic equation of state (see, e.g. Menikoff & Plohr 1989):

ε̂h(τ, p) =
p + (Γ + 1)p∞

Γ
τ, (2.20)

where Γ and p∞ are material constants. Recalling the definition of the Grüneisen
coefficient, we calculate that it is the constant Γ :

Γ = τ
∂p

∂εh

∣∣∣∣
τ

. (2.21)

Similarly, the bulk modulus is

K := −τ
∂p

∂τ

∣∣∣∣
η

= −τ

(
∂p

∂τ

∣∣∣∣
εh

− p
∂p

∂εh

∣∣∣∣
τ

)
= (Γ + 1)(p + p∞), (2.22)

so that the material constant p∞ has the significance that K0 := (Γ +1)p∞ is the bulk
modulus at zero pressure.

2.3. Quasi-linear form

The continuity equation (2.5), the momentum equation (2.8), and the energy equa-
tion (2.9) are in conservative, or divergence, form. To perform a characteristic analysis
and linearisation of this system, we first transform the conservation laws into quasi-
linear form. The particular quasi-linear form employed depends on the choice of
flow variables. We choose these variables to be the inverse deformation gradient
components gα

i , the velocity components vi , and the hydrodynamic pressure p.
The continuity equation (2.5) implies that(

gα
i

)
;t

+ vjgα
j ;i + gα

jv
j
;i = 0. (2.23)

By the curl-free condition (2.6), the second term is vjgα
i;j , so that the first two terms

constitute a convective derivative of gα
i . That is, using the notation ȧ = a;t + vja;j

for the convective derivative, the continuity equation (2.5) takes the quasi-linear form

ġα
i + gα

jv
j
;i = 0. (2.24)

In the standard manner (see e.g. Gurtin 1981), the quasi-linear forms of the
equations for the velocity components are derived by expanding the momentum
equation (2.8) and using the mass equation (2.7). The result is

v̇i − τσ ij
;j = 0. (2.25)

Viewing σ ij as a function of gα
i and p, we find that

v̇i − τ
∂σ ij

∂gγ
�

∣∣∣∣
p

gγ
�;j − τ

∂σ ij

∂p

∣∣∣∣
gγ

�

p;j = 0. (2.26)

Explicit formulae for the stress derivatives appearing in (2.26), specialized to the case
of uniaxial deformation that is relevant to this paper, are given in § A.3.

From the energy equation (2.9), we obtain a quasi-linear form of the equation for
the hydrodynamic pressure, as follows. Standard manipulations (see, e.g. Gurtin 1981)
involving the mass and momentum equations reduce the energy equation to

ε̇ − τσ ij vi;j = 0. (2.27)
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On the other hand, by the thermoelastic formulae (2.11) and (2.12) for σ ij and θ ,

ε̇ = θη̇ + tr
[

1
2
τF−1σ (FT )−1Ċ

]
= θη̇ − τ tr[σg−1ġ]. (2.28)

Therefore, by (2.24), ε̇ = θη̇ + τσ ij vi;j . Comparing this result to (2.27), we see that
the energy equation amounts to η̇ = 0. As p = p̃h(τ, η), this means that ṗ = −ρKτ̇ ,
where K is the bulk modulus (2.22). Using the conservation of mass equation, written
in the form τ̇ = τvj

;j , we arrive at the equation

ṗ + Kvj
;j = 0. (2.29)

for the pressure.
Equations (2.24), (2.26) and (2.29) constitute the quasi-linear form of the equations

for the flow variables gα
i , vi and p.

2.4. Shock conditions

A solution of a nonlinear system of conservation laws generally develops jump
discontinuities, even if its initial data are smooth; and to be compatible with the
integral form of the conservation laws, a jump discontinuity must satisfy the Rankine–
Hugoniot conditions (see, e.g. Smoller 1994). Solutions of the Rankine–Hugoniot
conditions for the conservation laws (2.5), (2.8) and (2.9) for elasticity represent shock
waves in either the longitudinal or shear modes.

To specify the Rankine–Hugoniot conditions, consider a point x
j
∗ on a propagating

surface of discontinuity. We use the following notation: nj denotes the surface
normal at this point; s denotes its speed in this normal direction; Q+ (respectively,
Q−) denotes the limiting value of a quantity Q as xj → x

j
∗ with nj (x

j − x
j
∗ ) kept

positive (respectively, negative); and �Q := Q+ −Q− and 〈Q〉 := (Q− +Q+)/2. Then
the Rankine–Hugoniot conditions for (2.5), (2.8) and (2.9) are

−s�gα
i + �(gα

j vj )ni = 0, (2.30)

−s�(ρvi) + �(ρvivj − σ ij )nj = 0, (2.31)

−s�(ρe) + �
(
ρevj − viσ

ij
)
nj = 0. (2.32)

2.5. Material interface conditions

A material interface is a boundary separating two different materials. The appropriate
model for the behaviour of a material interface depends on the problem of interest
(welded materials, a lubricated interface, etc.). In the present paper, we assume that:
(i) no separation and no penetration of the materials occurs at the material interface;
and (ii) no friction resists the relative tangential motion of the materials.

Assumption (i) means that the normal velocity is continuous across the material
interface:

njv
j
− = njv

j
+. (2.33)

The common value of the normal velocity at the interface is the speed at which the
material interface moves normal to itself. The tangential velocity, however, can be
discontinuous.

Another quantity that is continuous across the material interface is the traction
σ ij nj , as follows from (2.31) when combined with the jump condition corresponding
to (2.7), namely, −s�ρ + �(ρvj )nj = 0. Assumption (ii) means that the tangential
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components of the traction, in fact, vanish. Thus, the traction conditions are

niσ
ij
− nj = niσ

ij
+ nj , (2.34)

εk�mn�σmj
− nj = 0 = εk�mn�σ

mj
+ nj . (2.35)

This assumption of no friction at the interface is just one of many possible tangential
traction assumptions. We adopt it because it leads to weak shear waves. We expect
that the results obtained under this assumption hold more generally. Indeed, shear
waves are the key to stabilizing Richtmyer–Meshkov flow, and even weak shear waves
effect this stabilization.

2.6. Vector formulation

In the present paper, we apply the foregoing governing equations to Richtmyer–
Meshkov flow. We choose the coordinate frame such that the incident shock wave is
a plane wave in the x1-direction and the material interface is a small perturbation of
the (x2, x3)-plane. As we shall see in § 5.1, the linearized equations have coefficients
that are independent of x2 and x3. Consequently, we may use Fourier analysis in
(x2, x3) to write any solution as the linear superposition of Fourier modes. Also,
because of the covariance of the governing equations under rotations, a Fourier mode
with wavenumber k = (k2, k3) is obtained by rotation from the Fourier mode with
wavenumber (|k|, 0). In other words, without loss of generality, we may assume that
the solution is independent of x3.

Therefore, for the remainder of the paper, we restrict our attention to plane strain
flows, in which there is no motion in the z = x3 direction and there is no variation in the
motion along this direction. In effect, the flow is two-dimensional, and we occasionally
use the notation x = x1 and y = x2. Knowing that g3

1 = g3
2 = 0 = g1

3 = g2
3, g3

3 = 1
and v3 = 0, we omit these components from consideration. The governing equations
for the remaining flow variables can be summarized in a compact vector notation.

We define the conserved quantity vector to be

W =
[
g1

1 g1
2 g2

1 g2
2 ρv1 ρv2 ρe

]T
(2.36)

and the state vector to be

U =
[
g1

1 g1
2 g2

1 g2
2 v1 v2 p

]T
. (2.37)

Then

W = H(U) := [U1 U2 U3 U4 ρU5 ρU6 ρe]T , (2.38)

where ρ = ρ0(U1U4 −U2U3), e = εkinetic+ε, εkinetic = [(U5)
2+(U6)

2]/2, and ε is specified
in terms of U1, U2, U3, U4 and U7 by the incomplete form of the equation of state
(2.18). Similarly, the conservation laws (2.5), (2.8) and (2.9) take the form

H(U);t + F(U);x + G(U);y = 0, (2.39)

with

F(U) :=




U1U5 + U2U6

0

U3U5 + U4U6

0

ρ(U5)
2 − σ 11

ρU6U5 − σ 21

ρeU5 − U5σ
11 − U6σ

21




, G(U) :=




0

U1U5 + U2U6

0

U3U5 + U4U6

ρU5U6 − σ 12

ρ(U6)
2 − σ 22

ρeU6 − U5σ
12 − U6σ

22




(2.40)
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being the fluxes in the x- and y-directions, respectively, and σ ij being given in terms
of U1, U2, U3, U4 and U7 by (2.19). In these terms, the Rankine–Hugoniot conditions
(2.30), (2.31) and (2.32) are

−s�H(U) + �F(U) n1 + �G(U) n2 = 0. (2.41)

Likewise in this notation, the quasi-linear equations (2.24), (2.26) and (2.29) take the
form

U ;t + C(U) U ;x + D(U) U ;y = 0, (2.42)

where the coefficient matrices C(U) and D(U) are readily identified. (See § A.4 for
these matrices evaluated in a uniaxial state.)

3. Background solution
In this section, we construct a solution of the governing equations that represents

the normal interaction of a plane shock wave with a flat material interface. This
solution serves as the background for the Richtmyer–Meshkov flow.

We consider two half-spaces, x1 < 0 and x1 > 0, filled with two different solid
materials. The flat interface x1 = 0 between the materials is taken to be frictionless.
The background flow arises when a plane shock wave, incident from within the
material in x1 > 0 and propagating in the negative x1-direction, impinges on the
material interface. At the moment of collision of the incident shock wave with the
interface, the flow conditions are homogeneous in each half-space x1 < 0 and x1 > 0;
they therefore constitute the initial conditions of a Riemann initial-value problem. The
solution of this Riemann problem contains a transmitted wave, which is a longitudinal
shock wave, and a reflected wave, which is either a shock or a rarefaction wave of
the longitudinal family, along with an accelerated material interface.

The type of the reflected wave that emerges from the interaction of the incident
shock wave with the material interface is influenced primarily by the nature of the
two materials and sometimes (in the case of anomalous reflection) by the strength of
the incident shock wave. In the present work, we concentrate on the case when the
reflected wave is a shock wave. (We are preparing a separate paper in which we treat
reflected rarefaction waves.) For the material model that we have chosen, this case
occurs when a shock wave in a material with lower longitudinal acoustic impedance
is incident on an interface with a material with higher impedance.

3.1. Uniaxial shock conditions

The background solution is uniaxial, with all motion and all flow variation being in the
x = x1 direction. Therefore the only non-zero components of the inverse deformation
gradient, velocity and shock normal are ḡ1

1 = J̄ −1, ḡ2
2 = 1 = ḡ3

3, v̄1 =: v̄ and n̄1 = 1.
One consequence is that only the α = 1, i = 1 component of (2.30) is non-trivial:
−s̄�

(
J̄ −1

)
+ �

(
J̄ −1v̄

)
= 0. As the shock is assumed to be propagating in a homo-

geneous material, ρ0 is a constant, and multiplying this jump condition by ρ0 yields

−s̄�ρ̄ + � (ρ̄v̄) = 0, (3.1)

which is the jump condition corresponding to conservation of mass (2.7). Another
consequence of uniaxiality is the reduction of (2.31) and (2.32) to

−s̄�(ρ̄v̄) + �[ρ̄(v̄)2 − σ̄ 11] = 0, (3.2)

�σ̄ 12 = 0 = �σ̄ 13, (3.3)

−s̄�(ρ̄ē) + �(ρ̄ēv̄ − v̄σ̄ 11) = 0, (3.4)
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where ē = (v̄)2/2 + ε̄. Notice that (3.3) is satisfied automatically because σ̄ 12 and σ̄ 13

vanish for a uniaxial deformation.
Equations (3.1), (3.2) and (3.4) are the same as the Rankine–Hugoniot conditions

for gas dynamics, except that the pressure has been replaced by −σ̄ 11. The usual
manipulations (see, e.g. Menikoff & Plohr 1989) reduce these equations to the
following:

ρ̄−(v̄− − s̄) = ∓m̄ = ρ̄+(v̄+ − s̄), (3.5)

∓m̄�v̄ − �σ̄ 11 = 0, (3.6)

�ε̄ − 〈σ̄ 11〉�τ̄ = 0, (3.7)

where the mass flux m̄ > 0 and the upper (respectively, lower) sign is for a right-facing
(respectively, left-facing) shock wave. In particular,

v̄− ± m̄τ̄− = s̄ = v̄+ ± m̄τ̄+ with m̄ =

√
�σ̄ 11

�τ̄
(3.8)

and

�v̄ = ∓ sgn(�τ̄ )
√

�σ̄ 11�τ̄ . (3.9)

3.2. Shock curves

Consider the problem of solving the Rankine–Hugoniot conditions for the state
variables behind a shock wave (labelled by b) in terms of the fixed state ahead
(labelled by a) and a single parameter. For the equation of state that we have
adopted, ε̄ and σ̄ 11 are given by equations (2.18)–(2.20), specialized as in § A.2. In
particular, p̄b appears linearly in the Hugoniot relation (3.7), which may therefore be
solved to express p̄b in terms of τ̄b and the state ahead of the shock wave:

p̄b = −p∞ + (p̄a + p∞)
〈τ̄ 〉 − 1

2
(Γ + 1)�τ̄

〈τ̄ 〉 + 1
2
(Γ + 1)�τ̄

+ Γ G
〈(dev b̃)11〉�τ̄ − 〈τ̄ 〉�(ε̄2)

〈τ̄ 〉 + 1
2
(Γ + 1)�τ̄

, (3.10)

when Γ/(Γ +2) < τ̄b/τ̄a � 1; here, we use the notation �Q := Qb − Qa . Substitution
of this expression into the formulae for other quantities, for example, (A 14) for
σ̄ 11

b and (3.9) for v̄b, yields their values along the shock curve. Thus we obtain a
parameterization of the shock curve by τ̄b.

Examples of such shock curves, drawn in the (v̄b, −σ̄ 11
b )-plane, are shown in figure 2.

The incident curve I parameterizes left-facing shock waves in aluminium (Al) with
state A ahead (i.e. on the left-hand sides) of the waves. State A is defined by τ̄A = τ0,Al,
p̄A = 0, and v̄A = 0. One such shock wave has state B behind it, where τ̄B = 0.85 τ0,Al.
The reflected shock curve R parameterizes right-facing shock waves in aluminium
with state B ahead (i.e. on the right-hand sides) of the waves. One such shock
wave has state C behind it, where τ̄C ≈ 0.78 τ0,Al. Additionally, the transmitted
curve T parameterizes left-facing shock waves in tantalum (Ta) with state A′ ahead
(τ̄A′ = τ0,Ta, p̄A′ = 0, and v̄A′ = 0), and one such shock wave has state C ′ behind it,
where τ̄C ′ ≈ 0.89 τ0,Ta. Because v̄C ′ = v̄C and σ̄ 11

C ′ = σ̄ 11
C (cf. (2.33) and (2.34)), these three

shock waves fit together to form a solution of a Riemann problem corresponding to
the interaction of the incident shock wave with a tantalum–aluminium interface to
generate the reflected and transmitted shock waves, as indicated in the space–time
diagram, figure 3.
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Figure 3. Wave interaction diagram, depicted in space–time.

3.3. Incident shock wave

The background wave pattern for the Richtmyer–Meshkov problem arises when
a shock wave is incident on a material interface. Without loss of generality, we
assume that the shock wave is incident from the right, and that it arrives at the
interface at x = 0 when t = 0. An example was discussed in the preceding section
(see figure 3): a left-facing shock wave propagates through aluminium and strikes a
tantalum–aluminium interface; this incident shock wave connects the ambient state
of aluminium, labelled A, to a shocked state labelled B .

Equation (3.10) expresses the pressure behind the shock wave in terms of the specific
volume behind the wave together with the entire state ahead of the wave. Rather than
parameterizing the incident wave by the volume, however, we choose to parameterize
by the incident shock speed s̄I > 0. Substituting (3.10) into (A 14) to obtain σ̄ 11

b and
using the result in (3.8) expresses s̄I in terms of τ̄b; inverting this relation (e.g. with
a numerical equation solver) gives the parameterization of the incident shock wave
by s̄I .
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3.4. Riemann solution

When the incident shock wave arrives at the material interface, the state of the solid
materials is homogeneous to the left, as well as to the right, of the shock wave. Such a
situation constitutes a Riemann initial-value problem for the conservation laws (2.5),
(2.8) and (2.9), as restricted to this one-dimensional setting.

As we shall see presently, a uniaxial elastic Riemann problem can be solved using
only left- and right-facing longitudinal waves along with a material interface. No
shear waves are required; i.e. the shear waves have zero strength. For the situation
considered in the present paper, the longitudinal waves are shock waves. Therefore the
waves in the Riemann solution divide space–time into sectors, which are labelled in
the manner indicated in figure 4. (The right- and left-facing shear waves are acoustic
waves, with speeds being the shear characteristic speeds.) The waves themselves are
indicated by the subscripts �L, sL, i, sR and �R, respectively.

Consider whether a wave pattern containing only uniaxial longitudinal shock waves
and a material interface can satisfy the boundary conditions at the material interface.
There is a one-parameter family of left-facing longitudinal shock waves with Ū2L as
the state behind the wave and Ū1L fixed as the state ahead, and there is a second
one-parameter family of right-facing longitudinal shock waves with Ū2R as the state
behind the wave and Ū1R fixed as the state ahead. Also, because there are no shear
waves, Ū3L = Ū2L and Ū3R = Ū2R . On the other hand, the normal velocity boundary
condition (2.33) requires that v̄3L = v̄3R; the normal traction boundary condition (2.34)
requires that σ̄ 11

3L = σ̄ 11
3R; and the vanishing of the tangential traction (2.35) is satisfied

automatically by uniaxiality. Thus the boundary conditions at the material interface
are satisfied if the two shock parameters are chosen so that two conditions hold,
namely, continuity of normal velocity and traction.

Recall that (3.10) and (A 14) give the normal traction σ̄ 11
2L behind the left-facing

longitudinal shock wave in terms of τ̄2L and the state Ū1L ahead of the wave. Inverting
this relationship (e.g. numerically) determines τ̄2L in terms of σ̄ 11

2L and Ū1L, which gives
the parameterization of Ū2L by σ̄ 11

2L. Similarly, Ū2R is parameterized by σ̄ 11
2R .

Let v̄∗ and σ̄ 11
∗ denote the common values of normal velocity and traction in the

sectors 2L, 3L, 3R and 2R. Then the two boundary conditions at the material interface
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amount to (3.6) applied to the left- and right-facing longitudinal shock waves:

m̄�L(v̄∗ − v̄1L) = σ̄ 11
∗ − σ̄ 11

1L, (3.11)

−m̄�R(v̄∗ − v̄1R) = σ̄ 11
∗ − σ̄ 11

1R, (3.12)

where m̄�L and m̄�R denote the mass fluxes through the respective shock waves.
Solving these equations for v̄∗ and σ̄ 11

∗ yields the equations

σ̄ 11
∗ =

−v̄1L + v̄1R + m̄−1
�L σ̄ 11

1L + m̄−1
�R σ̄ 11

1R

m̄−1
�L + m̄−1

�R

, (3.13)

v̄∗ =
−σ̄ 11

1L + σ̄ 11
1R + m̄�Lv̄1L + m̄�Rv̄1R

m̄�L + m̄�R

. (3.14)

Equation (3.13) is a fixed-point equation for σ̄ 11
∗ . Once this equation is solved, all

requisite quantities in the Riemann solution can be determined. For example, v̄∗ may
be calculated from (3.14).

Remark. For the numerical simulations, it is convenient to change to a moving
coordinate frame in which the material interface is stationary. To this end, we simply
subtract v̄∗ from each of the velocities.

4. Linearization
In this section, the system of the governing equations derived in § 2 is linearized

around the background solution constructed in § 3. For the case of a reflected
shock wave that we consider in this paper, the background solution comprises two
longitudinal shock waves and a material interface whose trajectories divide space–
time domain into sectors in which the background solution is constant. It proves
useful to consider the trajectories of the two (zero-strength, i.e. acoustic) shear waves
in the background solution as further dividing space–time. In a space–time sector so
defined, the constant state vector of the background solution is denoted Ū , and the
perturbed solution is written U = Ū + Ũ .

Consider one of the shock waves, one of the shear waves, or the material interface
in the background solution. The states on its left- and right-hand sides are denoted
Ū− and Ū+. Its trajectory has the form x = s̄t , so that it propagates in the n̄ = (1, 0)
direction with speed s̄. The quantities Ū−, Ū+ and s̄ are related by internal boundary
conditions, such as the Rankine–Hugoniot conditions (2.41) or the material interface
conditions (2.33)–(2.35). A perturbation of this background wave has trajectory of
the form x = s̄t + ã(y, t), so that it propagates in the n = (1, −ã;y)/N direction with
speed s = (s̄ + ã;t )/N , where the normalization factor N = [1 + (ã;y)

2]1/2 is equal to
1 to first order in the perturbation amplitude. We write s = s̄ + s̃ and ni = n̄i + ñi ,
where n̄ = (1, 0). Then, to first order in the perturbation, s̃ = ã;t , ñ1 vanishes, and
ñ2 = −ã;y .

Thus the perturbation is described by Ũ for each of four sectors and by ã, or
equivalently s̃ and ñ2, for each of five waves. These perturbed quantities are subject
to the following linear equations.

4.1. Linearization of the partial differential equations

The background solution is piecewise constant in space–time. Therefore Ū trivially
satisfies the quasi-linear system of partial differential equations, equation (2.42), away
from from the jump discontinuities in the background solution. The linearization of
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this system about Ū is the system

Ũ ;t + C(Ū)Ũ ;x + D(Ū)Ũ ;y = 0, (4.1)

which is to be solved for the perturbation Ũ . Once Ũ is found, U = Ū + Ũ
approximately solves system (2.42).

4.2. Linearization of the shock conditions

The linearized Rankine–Hugoniot conditions provide internal boundary conditions
at the background shock waves. These conditions relate the state perturbations Ũ−
and Ũ+ in adjacent space–time sectors to the speed and direction perturbation for
the shock wave, s̃ and ñ2.

Consider one of the two longitudinal shock waves in the background solution. The
quantities Ū−, Ū+ and s̄ are related by the Rankine–Hugoniot conditions (2.41) for
n = n̄, which reduce to

−s̄�H(Ū) + �F(Ū) = 0. (4.2)

Therefore the linearization of Rankine–Hugoniot conditions (2.41) about the back-
ground solution is

−s̄�[H ′(Ū)Ũ] − �H(Ū) s̃ + �[F′(Ū)Ũ] + �G(Ū) ñ2 = 0. (4.3)

If Ũ−, Ũ+ and s̃ satisfy this equation for some ñ2, then U− = Ū−+Ũ−, U+ = Ū++Ũ+

and s = s̄ + s̃ approximately satisfy the Rankine–Hugoniot conditions (2.41) for
n = n̄ + (0, ñ2). Formulae for the quantities appearing as coefficients in (4.3) are
developed in § § A.3 and A.5.

4.3. Linearization of the shear wave conditions

In the background solution, the shear waves are absent, so that the background states
adjacent at each shear wave coincide: Ū− = Ū+ =: Ū . Therefore, in the linearized
Rankine–Hugoniot condition (4.3), the second and fourth terms vanish, and this
condition reduces to

[−s̄ H ′(Ū) + F′(Ū)]�Ũ = 0. (4.4)

This equation requires �Ũ to be a right eigenvector corresponding to the eigenvalue
s̄ of H ′(Ū)−1 F′(Ū). Using the formulae for H ′(Ū) and F′(Ū) in § A.5, it is easily
verified directly that [

0 0 1 0 0 ±c̄s 0
]T

(4.5)

is a right eigenvector with eigenvalue s̄ = v̄ ± c̄s , where

c̄s :=

(
− 1

ρ̄

∂σ 21

∂g2
1

∣∣∣∣
p

)1/2

=

(
G[1 + O(J̄ − 1)]

ρ̄

)1/2

(4.6)

is the shear sound speed. Therefore the linearized conditions at the right-facing
(respectively, left-facing) shear wave are

g̃1
−1 = g̃1

+1, g̃1
−2 = g̃1

+2, g̃2
−2 = g̃2

+2, (4.7)

ṽ1
− = ṽ1

+, p̃− = p̃+, (4.8)

ṽ2
+ − ṽ2

− = ±c̄s

[
g̃2

+1 − g̃2
−1

]
. (4.9)

Also, s̃ can be determined from the formula s = v ± cs , but in practice, we simply
dispense with the variables s̃, ñ2 and ã associated with shear waves.
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4.4. Linearization of the material interface conditions

The linearization of the conditions at the background material interface provides a
relation between the state perturbations Ũ− and Ũ+ on its left- and right-hand sides
and the direction perturbation ñ2.

As ñx vanishes to first order in the perturbation amplitude, the normal speed of
the material interface, namely the common value of njv

j , is v̄ + ṽ1 to first order.
The background satisfies v̄− = v̄+, so that the linearisation of the condition (2.33) of
normal velocity continuity, and the identification of the common value of the normal
velocity as the speed of the interface, reduces to

ṽ1
− = s̃ = ṽ1

+. (4.10)

Similarly, the traction components are σ ij nj = σ̄ i1 + σ̃ i1 + σ̄ i2 ñ2 to first order.
Because σ̄ 12

− = 0 = σ̄ 12
+ , we find that, to first order in the perturbation, the normal

traction is

niσ
ij nj = σ̄ 11 + σ̃ 11, (4.11)

and the only non-zero tangential traction component is

ε3�mn� σmj nj = σ̃ 12 + (σ̄ 22 − σ̄ 11) ñ2. (4.12)

Therefore, with the notation σ̄ 11
− = σ̄ 11

+ =: σ̄ 11, the linearisations of the traction
conditions (2.34) and (2.35) are

σ̃ 11
− = σ̃ 11

+ , (4.13)

σ̃ 12
− + (σ̄ 22

− − σ̄ 11) ñ2 = 0 = σ̃ 12
+ + (σ̄ 22

+ − σ̄ 11) ñ2. (4.14)

Expressed in terms of components of the perturbation of the state vector Ũ for a
uniaxial background solution Ū , the linearized stress components are

σ̃ 11 =
∂σ 11

∂g1
1

∣∣∣∣
p

g̃1
1 +

∂σ 11

∂g2
2

∣∣∣∣
p

g̃2
2 +

∂σ 11

∂p

∣∣∣∣
gγ

k

p̃, (4.15)

σ̃ 12 =
∂σ 12

∂g1
2

∣∣∣∣
p

g̃1
2 +

∂σ 12

∂g2
1

∣∣∣∣
p

g̃2
1, (4.16)

σ̃ 22 =
∂σ 22

∂g1
1

∣∣∣∣
p

g̃1
1 +

∂σ 22

∂g2
2

∣∣∣∣
p

g̃2
2 +

∂σ 22

∂p

∣∣∣∣
gγ

k

p̃, (4.17)

as shown in § A.3. Substituting these equations and using the explicit formulae for
the coefficients that appear, which are also derived in § A.3, we obtain the linearized
traction conditions.

5. Analysis
In this section, we perform some preliminary analysis on the linearized governing

equations that facilitate their solution.

5.1. Fourier analysis

The linearized governing equations for the perturbation, developed in § 4, have
coefficients that depend on t and x, but are independent of y. Therefore we can
reduce the dimensionality of the system of partial differential equations using Fourier
analysis in the y-direction: any perturbation solution is a linear superposition of
Fourier modes. Without loss of generality, we assume in this work that the initial
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perturbation of the material interface takes the form x = â0 cos(ky), where k > 0.
Then the solution contains only two modes of wavelength 2π/k.

Mathematically, it is easy to account for both of these modes by writing the
perturbation of the state vector in the form Ũ(x, y, t) = Û(x, t) exp(iky), where Û
takes complex values, and similarly for the other perturbation variables. Complex
variables are inconvenient for numerical calculations, however, being less efficient in
storage space and in speed than real variables. To avoid them, we take advantage of
the symmetry of the equations of elasticity and the background solution under the
reflection y �→ −y.

Define

Ũ e :=
[
g̃1

1 g̃2
2 ṽ1 p̃

]
, (5.1)

Ũo :=
[
g̃1

2 g̃2
1 ṽ2

]
. (5.2)

As may be verified by examining (A 25) and (A 26), the linearized system (4.1) takes
the form

(Ũ e);t + C(Ū)ee(Ũ e);x + D(Ū)eo(Ũo);y = 0, (5.3)

(Ũo);t + C(Ū)oo(Ũo);x + D(Ū)oe(Ũ e);y = 0. (5.4)

In other words, the matrix blocks C(Ū)eo, C(Ū)oe, D(Ū)ee and D(Ū)oo are zero.
Therefore, the system is preserved under the transformation y �→ −y, Ũ e �→ Ũ e and
Ũo �→ −Ũo. In particular, if we define

Ũ e(x, y, t) := Û e(x, t) cos(ky), (5.5)

Ũo(x, y, t) := Ûo(x, t) sin(ky), (5.6)

then

(Û e);t + C(Ū)ee(Û e);x + kD(Ū)eoÛo = 0, (5.7)

(Ûo);t + C(Ū)oo(Ûo);x − kD(Ū)oeÛ e = 0. (5.8)

Take note of the change of sign in the last equation. Equivalently, if A(Ū) := C(Ū)
and B(Ū) is the same as D(Ū) except that its second, third and sixth rows are opposite
in sign (i.e. B(Ū)oe = −D(Ū)oe), then

Û ;t + A(Ū)Û ;x + kB(Ū)Û = 0. (5.9)

Similarly, if s̃ �→ s̃ and ñ2 �→ −ñ2 under y-reflection, then each component of the
linearized shock conditions (4.3), of the linearized shear wave conditions (4.7)–(4.9),
and of the linearized material interface conditions (4.10), (4.13) and (4.14) is preserved.
Therefore, if we define

s̃(y, t) := ŝ(t) cos(ky), (5.10)

ñ2(y, t) := n̂2(t) sin(ky), (5.11)

(i.e. if we define ã(y, t) := â(t) cos(ky) and identify ŝ = â;t and n̂2 = kâ), then
the foregoing internal boundary conditions take the same form for the Fourier
transformed variables. For instance, (4.3) becomes

−s̄�[H ′(Ū)Û] − �H(Ū) ŝ + �[F′(Ū)Û] + �G(Ū) n̂2 = 0. (5.12)

5.2. Characteristic analysis

The eigenvalues of the coefficient matrix A(Ū) = C(Ū) appearing in (5.9) and given
explicitly in (A 25) are the characteristic velocities. These eigenvalues are easily
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computed and have the familiar form

v̄, v̄ ± c̄s , v̄ ± c̄�, (5.13)

where c̄s is the shear sound speed, given by (4.6), and

c̄� :=

[
− 1

ρ̄

(
K̄

∂σ 11

∂p

∣∣∣∣
gγ

k

+ J̄ −1 ∂σ 11

∂g1
1

∣∣∣∣
p

)]1/2

=

(
K̄ + 4

3
G[1 + O(J̄ − 1)]

ρ̄

)1/2

(5.14)

is the longitudinal sound speed. The eigenvalue v̄ has multiplicity three, reflecting that
η, g1

2 and g2
2 are Riemann invariants for this eigenvalue (see the left eigenvectors �3,

�4 and �5 below). We label the eigenvalues as follows:

λ1 := v̄ − c̄�, λ2 := v̄ − c̄s , (5.15)

λ3 := v̄, λ4 := v̄, λ5 := v̄, (5.16)

λ6 := v̄ + c̄s , λ7 := v̄ + c̄�. (5.17)

Left eigenvectors corresponding to these eigenvalues are

�1 :=
[
−∂σ 11/∂g1

1|p 0 0 −∂σ 11/∂g2
2|p −ρ̄c̄� 0 −∂σ 11/∂p|gγ

k

]
, (5.18)

�2 :=
[
0 −∂σ 12/∂g1

2|p −∂σ 12/∂g2
1|p 0 0 −ρ̄c̄s 0

]
, (5.19)

�3 :=
[
−J̄ K̄ 0 0 −K̄ 0 0 1

]
, (5.20)

�4 :=
[
0 1 0 0 0 0 0

]
, (5.21)

�5 :=
[
0 0 0 1 0 0 0

]
, (5.22)

�6 :=
[
0 −∂σ 12/∂g1

2|p −∂σ 12/∂g2
1|p 0 0 ρ̄c̄s 0

]
, (5.23)

�7 :=
[
−∂σ 11/∂g1

1|p 0 0 −∂σ 11/∂g2
2|p ρ̄c̄� 0 −∂σ 11/∂p|gγ

k

]
. (5.24)

6. Initial conditions
To initialize a numerical simulation of a linearized Richtmyer–Meshkov flow, we

must specify the initial perturbations of the wave fronts and the states. In this section,
we determine these initial conditions. The characteristic analysis of the previous
section shows that five waves emerge from the interaction of the incident shock
wave and the material interface. In the case considered in the present paper, where
the incident shock sweeps through the material with lower impedance first, the
reflected waves, as well as the transmitted waves, are shock waves. As mentioned
in § 5.1, we assume that the initial perturbation of the material interface takes the
form x = â0 cos(ky), where k > 0; all waves that emerge from the interaction have
perturbed fronts of a similar sinusoidal form, with the same wavelength and phase.
We also make the assumption that |kâ0|  1, which is basic for the validity of the
linearized analysis.

6.1. Initial amplitudes

Let us apply the simple geometric argument of Richtmyer (1960) to find the initial
amplitude for the perturbation of each front. Figure 5 illustrates the configuration of
waves near a point of interaction between the incident shock wave and the material
interface. As the flat shock wave interacts with the material interface, which is inclined
because of its sinusoidal perturbation, waves emanate from the moving interaction
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Figure 5. Interaction of the incident shock wave and the material interface.

point, or node. The speeds of these waves and their inclination angles are related to
the speed of the moving node. In figure 5, the node moves a distance d during a time
interval �t . For definiteness, let us work in a reference frame in which the material
interface is stationary before interacting with the shock wave; and let the other waves
move normal to themselves at the speeds SI , S�L, SsL, Si , SsR and S�R , respectively, in
the directions indicated in figure 5.

Geometrically, we find the following equalities:

d =
SI�t

sin αI

=
Sµ�t

sin(αµ − αI )
, (6.1)

for µ = �L, sL, i, sR and �R. As |kâ0|  1, so too is |kâµ(0+)|  1. Therefore,

Sµ

SI

=
sin(αµ − αI )

sin αI

≈ âµ(0+)

â0

− 1, (6.2)

where âµ(0+) is the initial perturbation amplitude of wave µ in the solution after the
interaction.

The wave speeds in figure 5 are related to incident shock speed and the wave speeds
occurring in the solution of the background Riemann problem. Indeed, SI = s̄I , and
to first order in the initial perturbation amplitude, Sµ ≈ s̄µ for µ = �L, sL, i, sR and
�R. Combining this result with the approximation (6.2), we arrive at the following
formula for the initial perturbations amplitude:

âµ(0+) =

(
1 +

s̄µ

s̄I

)
â0. (6.3)
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In particular, because s̄I > 0 and s̄i < 0, this formula implies that âi(0
+) < â0, i.e. the

perturbation amplitude of the interface is smaller after the interaction than prior to
the interaction.

6.2. Initial states and speeds

The initial perturbations of the states provide the initial data for the linearized
governing equations. In the background problem, the origin of time t = 0 is taken
to be the interaction time, and the left and the right states of the Riemann problem
constitute the initial data. By contrast, the appropriate choice for the origin of the time
for the perturbed problem is ambiguous because the interaction between the incident
shock wave and the perturbed material interface takes place over a time interval
of non-zero duration. This interaction is intrinsically two-dimensional, whereas the
linearized treatment is quasi-one-dimensional. In particular, the linear theory is valid
only after this interaction. Therefore, we initiate the numerical simulation of the
linearized equations at some positive time t = t0 > 0 rather than at t = 0. The results
of our calculations prove to be insensitive to the precise value of t0, so long as it is
much smaller than the time scale 1/(ks̄I ) of the flow. For definiteness, t0 is taken to
be the time â0/s̄I required for the incident shock wave to cross (half of) the initially
perturbed interface.

Because five background waves emanate from the origin (0, 0) in the (x, t)-plane
(see figure 4), spatial regions have opened up between them at t = t0. Therefore, initial
states must be specified throughout these regions. These regions correspond to the
spatial sectors in figure 5 between the waves that emerge from the moving node. The
states in these sectors can be determined by viewing the configuration of waves in
figure 5 as a steady two-dimensional solution of the equations of elasticity, as follows.

Consider a solution of the form as shown in figure 5, involving discontinuities along
rays emanating from a single point (the node), spatially and temporally constant states
in the sectors bounded by the discontinuities, and the node moving at a constant
velocity. By choice of reference frame, the node velocity can be chosen to be zero,
so that the solution is steady. The states between the waves and the angles of the
waves are constrained only by the appropriate Rankine–Hugoniot conditions (2.41)
or material interface conditions (2.33), (2.34) and (2.35) that hold at each wave,
together with the conditions that the waves meet at the node. Such a solution is
the analogue, for elasticity, of a shock–contact interaction solution for gas dynamics
obtained through shock polar analysis (see, e.g. Courant & Friedrichs 1976).

When the angle between the incident shock wave and the material interface is small,
the solution is a small perturbation of the normal incidence solution, which is the
one-dimensional Riemann problem solved in § 3. The linearisations of the Rankine–
Hugoniot and material interface conditions about the normal incidence solution are
therefore identical to the internal boundary conditions laid out in § 4, namely, (4.3)
for each of the two longitudinal shock waves, (4.7)–(4.9) for each of the two shear
waves, and (4.10), (4.13) and (4.14) for the material interface. We regard these 31
equations as linear equations for 31 unknown quantities: the seven state perturbation
components in each the four sectors between the waves, and the speed perturbations
for the two longitudinal shock waves and the material interface. These equations also
involve the amplitudes for the longitudinal shock waves and the material interface,
but these amplitudes are known from (6.3), which was derived from the conditions
that the waves meet at the node.

Some simplification of the linear system occurs. Recall from § 5.1 that the linearized
internal boundary conditions are preserved under y-reflection when the variables are
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Figure 6. Coordinate change from (x, t) to (ξ, τ ).

suitably defined as even or odd. Notice also that the inhomogeneous terms in the
linear system arise from the ñ2 terms in (4.3) and (4.14), which couple only to the odd
variables. Therefore, the even variables in the solution, namely, g̃1

1, g̃2
2, ṽ1, p̃ and s̃,

necessarily vanish.
By solving the linear system, we obtain state perturbations in the four sectors

between the waves in figure 5, We assign these states as constant initial data in each
of the corresponding regions at t = t0 between the waves in figure 4. Also, the linear
system yields initial values for the speed perturbations, and (6.3) gives initial values
for the wave amplitudes.

Remark. In his analysis for gas dynamics, Richtmyer (1960) linearizes the well-
known shock polar relations to determine the initial conditions. Our equivalent
approach reveals the close connection between the construction of initial conditions
and the linearized internal boundary conditions.

7. Numerical scheme
In this section we describe the numerical scheme used to solve the linearized govern-

ing equations.

7.1. Coordinate change

The computation of the solution is to be carried out in the space–time region between
the left-facing and right-facing longitudinal shock waves, as indicated in figure 6.
Because these waves move apart, the length of the spatial domain increases with time.
Therefore, if the spatial grid size �x were fixed, an increasing number of grid points
would be required at successive time steps. To avoid this inconvenient feature, we
follow Yang et al. (1994) in changing coordinates from (x, t) to (ξ, τ ), where ξ = x/t

and τ = ln(t/t0). Here the constant t0, which has units of time, is taken to be small
in a sense explained in § 6.2; t = t0 corresponds to τ = 0, which is the beginning of
the numerical simulations. This change of coordinates is shown in figure 6. Relative
to these new coordinates, the background discontinuous waves, each of which moves
at a constant speed, have fixed positions, and thus the regions between waves have
fixed lengths.

Upon changing coordinates in this fashion, the system of partial differential
equations (5.9) is transformed as follows. Let u(ξ, τ ) := Û(x, t) stand for the state
perturbation regarded as a function of (ξ, τ ) rather than (x, t). Then, because t∂x = ∂ξ
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and t∂t = −ξ∂ξ + ∂τ , (5.9) becomes

u;τ + [A(Ū) − ξ I]u;ξ + kt0 exp(τ )B(Ū)u = 0. (7.1)

Notice that the eigenvalues of the coefficient matrix A(Ū)−ξ I are λk −ξ , with �k being
a corresponding left eigenvector, for k = 1, . . . , 7. For the purpose of discretization,
we rewrite (7.1) in the following divergence form:

u;τ + f (u, ξ );ξ = g(u, τ ), (7.2)

where

f (u, ξ ) := [A(Ū) − ξ I]u, (7.3)

g(u, τ ) := −[I + kt0 exp(τ )B(Ū)]u. (7.4)

7.2. Numerical scheme for interior regions

The solution of the linearized governing equations are approximated by discrete
values un

m of the state vector at grid points ξm and time levels τn. The grid spacing
�ξ is taken to be uniform, and the time step �τ is chosen so that the Courant–
Friedrichs–Levy condition is satisfied. We use use the two-step Lax–Wendroff scheme
(see, e.g. Strikwerda 1989) applied to (7.2):

un+1/2
m+1/2 = 1

2

(
un

m + un
m+1

)
− 1

2

�τ

�ξ

[
f
(
un

m+1, ξm+1

)
− f

(
un

m, ξm

)]
+ 1

4
�τ

[
g
(
un

m, τ n
)

+ g
(
un

m+1, τ
n
)]

, (7.5)

un+1
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m − �τ
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[
f
(
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+ 1
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)
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(
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m+1/2, τ
n+1/2

)]
. (7.6)

Notice the absence of artificial viscosity terms; the reason for not needing such terms,
and indeed the adverse effects of artificial viscosity, are discussed in § 8.1. The scheme
is formally second-order accurate.

7.3. Numerical schemes for internal boundaries

An internal boundary, or front, is one of the background waves, i.e. a longitudinal
shock wave, a shear wave, or the material interface. Because the background solution
is generally discontinuous at internal boundaries, the numerical scheme must treat the
solution near them in a special manner. In § § 4.2, 4.3 and 4.4, we derived the linearized
Rankine–Hugoniot conditions for the longitudinal shock waves, the eigenvector
conditions for the shear waves, and the linearized material interface conditions.
In this section, we combine these internal boundary conditions with the method of
characteristics and with linear extrapolation to implement a front-tracking scheme.

In addition to the states un
m at the interior grid points ξm, we associate with each of

the five background waves: (a) two states, un
− and un

+, corresponding to the limiting left
and right states at the wave; (b) a speed sn corresponding to the perturbation speed
ŝ; and (c) an amplitude an corresponding to the perturbation amplitude â. According
to the type of background wave, these quantities are related by the linearized shock
conditions (4.3), the linearized shear wave conditions (4.7)–(4.9), or the linearized
material interface conditions (4.10), (4.13) and (4.14). (Recall that n̂2 = kâ.) In addition,
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Figure 7. Characteristics impinging on a left-facing longitudinal shock wave.

the perturbation amplitude is related to the speed perturbation through the ordinary
differential equation â;τ = t0 exp(τ )ŝ.

Remark. As the linearized shear-wave conditions involve neither the perturbation
speed nor the perturbation amplitude, we dispense with these variables for shear
waves.

The evolution of the on-front quantities is influenced by, as well as influences, the
evolution of the interior states. This coupling is implemented numerically as follows.

7.3.1. Coupling of the front to the interior

The interior states close to a front influence the on-front quantities via characteristics
that impinge on the front. This influence supplements the internal boundary condi-
tions, which are insufficient in number, by themselves, to determine the evolution of
front quantities. We now present the details of the numerical scheme for evolving the
left-facing longitudinal shock wave; the schemes for the other background waves are
similar.

There are sixteen on-front quantities to be determined: the two states un+1
− and un+1

+

(each with seven components), the shock speed perturbation sn+1, and the perturbation
amplitude an+1. The linearized shock conditions (5.12) constitute seven equations.
Solving the differential equation â;τ = t0 exp(τ )ŝ yields one more equation, which we
approximate by

an+1 = an + t0[exp(τn+1) − exp(τn)] 1
2
(sn + sn+1). (7.7)

To obtain the remaining eight equations, we employ the method of characteristics.
First, we trace the characteristics back from the front to nearby points in the interior.
In the case of the left-facing longitudinal shock wave, there are seven characteristics
impinging on the left side of the wave and one characteristic impinging on the right
side, as shown in figure 7.

More precisely, let λ−,j denote the j th eigenvalue, and let �−,j denote the corres-
ponding left eigenvector, for the background state Ū− on the left side of the
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background wave. Applying the eigenvectors to (7.1) yields

[∂τ + (λ−,j − ξ )∂ξ ]�−,j u = −kt0 exp(τ )�−,jB(Ū−)u. (7.8)

Let the j th characteristic curve on the left side of the background wave be the
solution, denoted ξ = ξ̄−,j (τ ), of the following problem:

dξ

dτ
= λ−,j − ξ, ξ = s̄ when τ = τ n+1, (7.9)

where s̄ denotes the speed of the background wave. Integrating (7.8) along the j th
characteristic, we find that

�−,j [u(s̄, τ n+1)−u(ξ̄−,j (τ
n), τ n)] = −kt0�−,jB(Ū−)

∫ τn+1

τn

exp(τ ) u(ξ̄−,j (τ ), τ ) dτ. (7.10)

We approximate this result as follows:

�−,j [un+1
− − un

−,j ] = −kt0[exp(τn+1) − exp(τn)] · �−,jB(Ū−)un
−,j , (7.11)

where un
−,j is obtained by interpolation among the states for time level τn at the foot

of the characteristic curve,

ξn
−,j := ξ̄−,j (τ

n) = exp(�τ )s̄ + [1 − exp(�τ )]λ−,j . (7.12)

Equation (7.10) for j =1, . . . , 7 constitute seven additional equations for the on-
front quantities. One final equation is obtained by an analogous argument concerning
the j = 1 characteristic on the right side of the background wave. Thus we obtain
a complete set of linear equations for the on-front quantities at the left-facing
longitudinal shock wave. Similar considerations apply to the right-facing longitudinal
shock wave.

For the shear waves, the equations corresponding to the six characteristics impinging
on one side and two characteristics impinging on the other side, along with the
six linearized internal boundary conditions (4.7)–(4.9), constitute a complete set of
equations for the fourteen on-front quantities, un+1

− and un+1
+ .

Similarly, for the material interface, there are five characteristics impinging on each
side, and five linearized internal boundary conditions, namely, (4.10), (4.13) and (4.14),
which, along with (7.7), completely determine the 16 on-front quantities, un+1

− , un+1
+ ,

an+1 and sn+1.

7.3.2. Coupling of the interior to the front.

In § 7.2, we described the scheme (7.5)–(7.6) that is applied to interior states that
are sufficiently far from the fronts, in that the three stencil points ξm−1, ξm and ξm+1

lie in the same sector (i.e. the same side of all of the background waves). If one of
the stencil points lies on the opposite side of a background wave from the other two,
then the interior scheme is modified to account for the influence of the front on the
interior.

Consider the particular situation shown in figure 8. Recall that the solution u is
generally discontinuous at the background wave as a consequence of the discontinuity
in the background solution, even when the initial data for u are smooth. Therefore
applying the Lax–Wendroff scheme to the states un

m−1, un
m and un

m+1 to obtain un+1
m

would not be a good scheme. To circumvent this problem, we (i) replace un
m+1 by

(un
m+1)

∗, obtained by linearly extrapolating from from un
m at ξm and un

− at s̄ to the
position ξm+1 and (ii) apply the Lax–Wendroff scheme to un

m−1, un
m and (un

m+1)
∗ to
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Figure 8. Grid configuration near a background wave.

obtain un+1
m . A similar scheme is used when the grid point ξm−1 is separated from ξm

and ξm+1 by a background wave.

Remark. An alternative to this linear extrapolation scheme is constant extrapola-
tion, in which (un

m+1)
∗ is set to un

−. In our numerical experiments, we have found that
constant extrapolation is insufficiently accurate for long time integration; see § 8.1.
On the other hand, the linear extrapolation method is prone to spurious oscillations
if the spacing between the extrapolation points is too small. Therefore we optimize
the spatial grid so that, for each of the five background waves, s̄ lies as close as
possible to half-way between adjacent grid points. (Here we take advantage of having
stationary fronts in (ξ, τ )-coordinates.)

8. Results
In this section, we present some results from our simulations of Richtmyer–Meshkov

flow. For the purpose of verifying our numerical algorithm and implementation, we
first apply our code to a gas dynamics problem for which there is a published solution.
Then we apply the code to some Richtmyer–Meshkov flow problems involving
materials with shear stiffness.

8.1. Gas dynamics

A Richtmyer–Meshkov flow configuration for polytropic gases can be characterized
for dimensionless parameters, as follows. Let L and R indicate the gases on the left-
and right-hand sides of the material interface in figure 1 (a), and let R, a and R, b

indicate the states of gas R ahead of and behind the incident shock wave. Then
the dimensionless parameters are the Grüneisen parameters ΓL and ΓR , the density
ratio ρ̄L/ρ̄R,a , and the strength of the incident shock wave, measured, for example,
by the Mach number M̄I = s̄I /c̄R,a or the pressure ratio S̄I = (p̄R,b − p̄R,a)/p̄R,b.
Following Yang et al. (1994), we choose units so that ρ̄R,a = 1, the wavenumber
is k = 1, and the incident shock speed is s̄I = 1.

The gas dynamics test problem is drawn from the paper of Yang et al. (1994).
The material parameters ΓL =0.0935, ΓR = 0.4 and ρ̄L/ρ̄R,a = 5.1 correspond to the
heavier gas on the left being sulphur hexafluoride (SF6) and the lighter gas on the
right being air. The incident pressure ratio is S̄I = 0.385, corresponding to a Mach
number of M̄I = 1.24. In figure 9, we present a plot of the (normalized) growth rate
ŝi/â0 = (âi/â0);t of the material interface vs. time t as calculated by our code. For
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Figure 9. Growth rate vs. time for the Yang–Zhang–Sharp gas dynamics test problem.

this Richtmyer–Meshkov flow problem involving two gases, the growth rate increases
quickly early on, falls for a short time, and then tends toward a positive asymptotic
value that roughly (but not exactly) agrees with the prediction of the impulsive model
of Richtmyer (1960) (shown as the growth rate value of 0.11 in the figure). In this sense,
the material interface between gases is linearly unstable in Richtmyer–Meshkov flow.

Our growth rate results are identical to those of Yang et al. (1994) (which are pre-
sented in figure 7 of this paper); so too are our results (not shown here) for pressure
vs. position. This successful comparison gives us confidence that our numerical
implementation yields the correct solution for gases. In addition, we performed some
numerical experiments to examine how the parameters involved in the numerical
scheme affect the results.

For instance, we verified that the solution had converged under mesh refinement
(with 459 grid points used for the solution shown in figure 9). We also checked the
effect of artificial viscosity. Adding linear artificial viscosity,

b
[
un

m+1 − 2un
m + un

m−1

]
, (8.1)

to the second step, (7.6), of the Lax–Wendroff method, where b > 0 is a non-
dimensional constant, dampens the spurious oscillations that typically appear, but it
also reduces the accuracy of the method to first order. Figure 10 shows how artificial
viscosity affects the growth rate: when the integration time is long (the number of
time steps is several times the number of grid points), as it is in our simulations,
the growth rate computed with artificial viscosity drifts significantly from the correct
result. These examples demonstrate the need to avoid artificial viscosity. The Lax–
Wendroff method is successful without artificial viscosity because, in a method that
tracks all fronts, it is applied only where the solution is smooth. Figure 10 also shows
that a similar problem with long time integration occurs if the algorithm for coupling
the interior to the front uses constant, rather than linear, extrapolation. These results
suggest that the numerical method must be second-order accurate. For this reason,
we do not use a TVD scheme (see, e.g. LeVeque 1992) in the interior.
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Figure 10. Growth rate vs. time for the gas dynamics test problem, as calculated with various
artificial viscosity coefficients and with constant, instead of linear, extrapolation at the fronts.

8.2. Elastic materials

Our model of an elastic material involves two parameters not present for a polytropic
gas: the shear modulus G and the bulk modulus K0 = (Γ + 1)p∞ at zero pressure. The
former parameter accounts for shear stiffness, and the latter for the non-zero sound
speed at zero pressure. The main focus of this paper is the effect of these parameters
on the growth rate of the perturbation amplitude in Richtmyer–Meshkov flow.

As an example of Richtmyer–Meshkov flow involving elastic materials, we take the
heavier material on the left to be tantalum and the lighter material on the right to
be aluminium. Tantalum is modelled as having ρ0,Ta = 16.69 g cm−3, ΓTa = 1.67, GTa =
69.0 GPa, and K0,Ta = 194.GPa; aluminium is modelled as having ρ0,Al = 2.707 g cm−3,
ΓAl = 1.97, GAl = 27.1 GPa, and K0,Al = 78.5 GPa. For this and other test problems in
this section, we take p̄R,a = 10−4 GPa and k = 1 mm−1. The unit of time in all graphs
is 1 µs.

To aid in exploring the effect of shear stiffness, we introduce a dimensionless inter-
polation parameter κ between 0 and 1 and replace the shear moduli of tantalum and
aluminium by κGTa and κGAl, respectively. We report on six runs corresponding to
the values κ = 0.001, 0.01, 0.05, 0.2, 0.6 and 1.0. In these runs, we keep the Mach
number of the incident shock wave fixed at M̄I =1.076. (When κ = 1, the speed of the
incident shock wave is s̄I = 7.0 km s−1, the particle velocity behind it is 0.70 km s−1,
and the pressure behind it is 9.7 GPa.)

First we take κ = 0.001, so that the shear modulus is small. The (normalized) growth
rate ŝi/â0 = (âi/â0);t and (normalized) amplitude âi/â0, plotted vs. time, are shown in
figure 11. The growth rate rises initially, just as in figure 9, but rather than tending
to a plateau, it oscillates with a long period. The mean of these oscillations of the
growth rate is zero, as indicated by the plot of the amplitude (the time integral of the
growth rate), which does not grow with time.

This simulation and all other elastic simulations we have performed support the
principal conclusion of this work: a perturbed frictionless material interface between
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Figure 11. Results for a small value of the interpolation parameter (κ = 0.001).
(a) Growth rate vs. time. (b) Amplitude vs. time.
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Figure 12. Amplitude vs. time for intermediate values of the interpolation parameter κ .

elastic materials is not unstable when struck normally by a shock wave. An important
consequence is that the linearized theory remains valid at late time.

Next, we increase the material interpolation parameter successively to κ = 0.01,
0.05, 0.2 and 0.6. The plots of amplitude vs. time appear in figure 12. As the values
of the shear moduli increase, the (normalized) amplitude âi/â0 tends to oscillate with
shorter period and smaller peak-to-peak variation around an asymptote. The plot of
amplitude vs. time for tantalum/aluminium (i.e. κ = 1) appears in figure 13.

The observed increase of the frequency with the shear moduli is quantified as
follows. A scale for frequency is set by the shear moduli; indeed, k

√
G/ρ has units of

frequency. This scale varies as
√

κ in the simulations of figures 12 and 13. For these
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κ for various values
of the interpolation parameter κ .

simulations and others, a plot of the period vs. 1/
√

κ is fitted very well by a straight
line through the origin (see figure 14).

The results are similar for simulations with various incident shock speeds (s̄I being
6.65, 6.88, 7.00 and 7.27 km s−1, corresponding to Mach numbers M̄I = 1.022, 1.057,
1.076 and 1.116, particle speeds 0.22, 0.54 0.70, and 1.13 km s−1, and pressures 2.8,
7.3, 9.7 and 17.2 GPa), as shown in figure 15. Notice also that the frequency of
the oscillations is quite independent of Mach number. Moreover, for a larger shock
strength, the amplitude oscillates with a larger peak-to-peak variation about a smaller
asymptotic value. This asymptotic value corresponds roughly to the compression
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Figure 15. Amplitude vs. time for tantalum/aluminium and various Mach numbers of the
incident shock wave. The lines show the values (J̄ 3L + J̄ 3R)â0/2 corresponding to static
compression of the perturbation by the background solutions.

caused by the initial shock wave, as seen from the lines drawn in figure 15 that
show the values (J̄ 3L + J̄ 3R)â0/2 that would result from static compression of the
perturbation by the background solutions. Larger variation of the amplitude is
consistent with a more energetic shock wave.

Remark. These shock strengths are achievable in laboratory experiments. However,
the shock pressures far exceed the yield strengths of the materials considered (between
0.01 and 0.17 GPa for aluminium). As our model does not account for plastic
behaviour, the simulations are not realistic. Nonetheless, Richtmyer–Meshkov flow
for elastic materials is stable even when initiated by shock waves with large strength.

To check the effect of the bulk modulus K0 on elastic Richtmyer–Meshkov flow,
we reduce the values of K0 to 125 GPa and 50.2 GPa for tantalum and aluminium,
respectively. (These values are such that the corresponding longitudinal elastic sound
speeds, given by the formula

√
(K0 + 4G/3)/ρ, equal the bulk sound speeds

√
K0,Ta/ρ

and
√

K0,Al/ρ; the shear sound speed are unchanged. The bulk sound speed is roughly
the propagation speed of the longitudinal plastic wave in a uniaxial stress flow. Thus,
the elastic model has wave speeds that are close to those in the plastic flow regime.)
Comparing the result in figure 16 to that in figure 13 shows that changing the bulk
modulus has little effect.

We have also observed the following behaviour of the discontinuity in the transverse
velocity component, v̂2, at the material interface: for gas dynamics, �v̂2 remains close
to its initial value; but for elastic materials, it reduces in size by a substantial factor
and subsequently alternates in sign with the same frequency as observed in the
amplitude plots (see figure 17.) Notice that the vorticity ω3 = v2

;1 − v1
;2 has a delta-

function singularity at the material interface with coefficient �v̂2 sin(ky). Therefore,
�v̂2 is essentially the vorticity that drives the roll-up of the material interface.
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Figure 16. Amplitude vs. time for tantalum/aluminium with reduced bulk moduli.
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Figure 17. Vorticity �v̂2 vs. time for gas dynamics and for elasticity. (a) Yang–Zhang–Sharp
gas problem. (b) Tantalum/aluminium with s̄I = 6.65.

This observation suggests an explanation for the stability of Richtmyer–Meshkov
flow for elastic materials. The incident shock wave deposits vorticity on the perturbed
interface, and this sheet of vorticity is subject to Kelvin–Helmholtz instability. In
(inviscid) gas dynamics, the vorticity remains on the interface (it propagates along
particle paths), so that Kelvin–Helmholtz instability leads to growth of perturbations.
In contrast, for elastic materials, the vorticity propagates at the shear wave speeds (�2

and �6 are the only eigenvectors with non-zero v2 components), and is thus carried
off the interface. Therefore, perturbations of the interface do not grow.

Finally, we have run simulations of linearized Richtmyer–Meshkov flow for a large
variety of pairs of elastic materials. The results are qualitatively similar to those for
tantalum/aluminium.

9. Discussion
Although we have not thoroughly explored the large parameter space for the elastic

Richtmyer–Meshkov flow problem, our simulations support the following conclusions
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concerning the growth rate and amplitude of perturbations of a frictionless material
interface between elastic materials when it is struck normally by a shock wave.

(a) Even a small shear modulus changes the late-time asymptotic behaviour of the
growth rate: rather than approaching a constant, so that the amplitude grows linearly,
it oscillates in such a way that the amplitude remains bounded. In particular, the
linear theory remains valid at late time.

(b) The amplitude oscillates around an asymptotic value with a frequency that
grows with the shear moduli and is independent of the strength of the incident shock
wave.

(c) If the shock strength is increased, the amplitude oscillates about a smaller
asymptotic value and the oscillations increase in variation.

(d) Varying the bulk modulus has little effect on the behaviour of the material
interface.

(e) The vorticity on the material interface, which is deposited initially by the
incident shock wave, rapidly decays because it is carried off the interface by shear
waves.

This work was supported in part by the US Department of Energy. The major part
of this work derives from the PhD dissertation of J.N. P., who thanks Professor James
Glimm for his inspiration and guidance toward its completion.

Appendix. Explicit formulae
In this Appendix we present the formulae that are specific to the assumptions of

either (i) plane-strain perturbed flow or (ii) uniaxial background flow.

A.1. Plane-strain formulae

For the general plane-strain form of gα
i , the non-zero components of F are F 1

1 = Jg2
2,

F 1
2 = −Jg1

2, F 2
1 = −Jg2

1, F 2
2 = Jg1

1 and F 3
3 = 1, where the Jacobian J is given by

J =
(
g1

1g
2
2 − g1

2g
2
1

)−1
. (A 1)

Consequently, the non-zero components of b̃ are

b̃11 = J 4/3
[(

g1
2

)2
+

(
g2

2

)2]
, (A 2)

b̃12 = b̃21 = −J 4/3
[
g1

1g
1
2 + g2

1g
2
2

]
, (A 3)

b̃22 = J 4/3
[(

g1
1

)2
+

(
g2

1

)2]
, (A 4)

b̃33 = J −2/3. (A 5)

These formulae allow the computation of

ε2 = 1
2
(b̃11 + b̃22 + b̃33 − 3) (A 6)

and the non-zero components of dev b̃, namely

(dev b̃)11 = 2
3
b̃11 − 1

3
b̃22 − 1

3
b̃33, (A 7)

(dev b̃)12 = (dev b̃)21 = b̃12, (A 8)

(dev b̃)22 = − 1
3
b̃11 + 2

3
b̃22 − 1

3
b̃33, (A 9)

(dev b̃)33 = − 1
3
b̃11 − 1

3
b̃22 + 2

3
b̃33. (A 10)

Explicit formulae for ε and σ ij are obtained by substituting the foregoing equations
into (2.18) and (2.19), respectively.
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A.2. Flow variables in a uniaxial state

Next we record the values of flow quantities in a uniaxial state, indicated by a bar.
(Evaluation at the uniaxial state simplifies the formulae, and the Richtmyer–Meshkov
flow is a perturbation of such a uniaxial state.) The only non-zero components of ḡ
are ḡ1

1 = J̄ −1, ḡ2
2 = 1 and ḡ3

3 = 1, and the only non-zero component of v̄i is v̄1 =: v̄,
so that

Ū = [J̄ −1 0 0 1 v̄ 0 p̄]T . (A 11)

We have that ρ̄ = ρ0J̄
−1, τ̄ = τ0J̄ , ē = ε̄kinetic + ε̄, ε̄kinetic = (v̄)2/2, and ε̄ = ε̂h(τ̄ , p̄)+τ̄Gε̄2,

where by (A 2)–(A 6),

ε̄2 = 1
2

{
J̄ 4/3 + 2J̄ −2/3 − 3

}
. (A 12)

In these terms,

W̄ = H(Ū) = [J̄ −1 0 0 1 ρ̄v̄ 0 ρ̄ē]T . (A 13)

Moreover, by (A 7)–(A 10), the non-zero components of σ̄ are

σ̄ 11 = −p̄mean + 2
3
GJ̄ −2/3(J̄ 2 − 1), σ̄ 22 = σ̄ 33 = −p̄mean − 1

3
GJ̄ −2/3(J̄ 2 − 1), (A 14)

where p̄mean = p̄ − Gε̄2. Therefore, the flux in the x-direction is

F(Ū) = [J̄ −1v̄ 0 0 0 ρ̄(v̄)2 − σ̄ 11 0 ρ̄ēv̄ − v̄σ̄ 11]T (A 15)

and the flux in the y-direction is

G(Ū) = [0 J̄ −1v̄ 0 0 0 −σ̄ 22 0]T . (A 16)

A.3. Stress and energy derivatives in a uniaxial state

Now we calculate the stress derivatives appearing in (2.26), evaluated in a uniaxial
state (again indicated by a bar). We also calculate the energy derivatives required in
§ § A.4 and A.5.

As a preliminary step in calculating the stress derivatives, we note that the non-zero
derivatives of b̃11 and b̃22 with respect to gα

i , evaluated in a uniaxial state, are

∂b̃11

∂g1
1

∣∣∣∣
p

= − 4
3
J̄ 7/3,

∂b̃11

∂g2
2

∣∣∣∣
p

= 2
3
J̄ 4/3, (A 17)

∂b̃22

∂g1
1

∣∣∣∣
p

= 2
3
J̄ 1/3,

∂b̃22

∂g2
2

∣∣∣∣
p

= − 4
3
J̄ −2/3. (A 18)

In particular, we find that the non-zero derivatives of ε2 are

∂ε2

∂g1
1

∣∣∣∣
p

= − 2
3
J̄ 1/3(J̄ 2 − 1),

∂ε2

∂g2
2

∣∣∣∣
p

= 1
3
J̄ −2/3(J̄ 2 − 1). (A 19)

Noting that σ ij = (−p + Gε2)δij + G(dev b̃)ij and referring to (A 7)–(A 9), we find
that the non-zero derivatives of the stress components, evaluated in a uniaxial state,
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are as follows:

∂σ 11

∂g1
1

∣∣∣∣
p

= − 2
9
GJ̄ 1/3(7J̄ 2 − 1),

∂σ 11

∂g2
2

∣∣∣∣
p

= 1
9
GJ̄ −2/3(7J̄ 2 − 1), (A 20)

∂σ 12

∂g1
2

∣∣∣∣
p

=
∂σ 21

∂g1
2

∣∣∣∣
p

= −GJ̄ 1/3,
∂σ 12

∂g2
1

∣∣∣∣
p

=
∂σ 21

∂g2
1

∣∣∣∣
p

= −GJ̄ 4/3, (A 21)

∂σ 22

∂g1
1

∣∣∣∣
p

= − 2
9
GJ̄ 1/3(J̄ 2 − 4),

∂σ 22

∂g2
2

∣∣∣∣
p

= 1
9
GJ̄ −2/3(J̄ 2 − 13), (A 22)

∂σ 11

∂p

∣∣∣∣
gγ

k

= −1,
∂σ 22

∂p

∣∣∣∣
gγ

k

= −1. (A 23)

Similarly, from (2.18) and (2.20) we find that the non-zero derivatives of ρε are

∂(ρε)

∂g1
1

∣∣∣∣
p

= − 2
3
GJ̄ 1/3(J̄ 2 − 1),

∂(ρε)

∂g2
2

∣∣∣∣
p

= 1
3
GJ̄ −2/3(J̄ 2 − 1),

∂(ρε)

∂p

∣∣∣∣
gγ

k

=
1

Γ
.

(A 24)

A.4. Coefficient matrices in a uniaxial state

Next we display the coefficient matrices appearing in (4.1), which are read from the
quasi-linear equations (2.24), (2.26) and (2.29), as evaluated in a uniaxial state:

C(Ū) =




v̄ 0 0 0 J̄ −1 0 0

0 v̄ 0 0 0 0 0

0 0 v̄ 0 0 1 0

0 0 0 v̄ 0 0 0

−τ̄
∂σ 11

∂g1
1

∣∣∣∣
p

0 0 −τ̄
∂σ 11

∂g2
2

∣∣∣∣
p

v̄ 0 −τ̄
∂σ 11

∂p

∣∣∣∣
gγ

k

0 −τ̄
∂σ 21

∂g1
2

∣∣∣∣
p

−τ̄
∂σ 21

∂g2
1

∣∣∣∣
p

0 0 v̄ 0

0 0 0 0 K̄ 0 v̄




(A 25)

and

D(Ū ) =




0 0 0 0 0 0 0

0 0 0 0 J̄ −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 −τ̄
∂σ 12

∂g1
2

∣∣∣∣
p

−τ̄
∂σ 12

∂g2
1

∣∣∣∣
p

0 0 0 0

−τ̄
∂σ 22

∂g1
1

∣∣∣∣
p

0 0 −τ̄
∂σ 22

∂g2
2

∣∣∣∣
p

0 0 −τ̄
∂σ 22

∂p

∣∣∣∣
gγ

k

0 0 0 0 0 K̄ 0




.

(A 26)
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We have taken note of which matrix entries are zero because a stress derivative
vanishes in a uniaxial state, as shown in § A.3.

A.5. Flux derivatives in a uniaxial state

Finally, we calculate the quantities appearing as coefficients in the linearized Rankine–
Hugoniot conditions, (4.3). The derivative of the conserved quantity is

H ′(Ū) =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

ρ0v̄ 0 0 ρ̄v̄ ρ̄ 0 0

0 0 0 0 0 ρ̄ 0

H ′(Ū)71 0 0 H ′(Ū)74 ρ̄v̄ 0 H ′(Ū)77




, (A 27)

where

H ′(Ū)71 = ρ0ε̄kinetic +
∂(ρε)

∂g1
1

∣∣∣∣
p

, H ′(Ū)74 = ρ̄ε̄kinetic +
∂(ρε)

∂g2
2

∣∣∣∣
p

, (A 28)

H ′(Ū)77 =
∂(ρε)

∂p

∣∣∣∣
gγ

k

. (A 29)

The derivative of the flux in the x-direction is

F′(Ū) =




v̄ 0 0 0 J̄ −1 0 0

0 0 0 0 0 0 0

0 0 v̄ 0 0 1 0

0 0 0 0 0 0 0

F ′(Ū)51 0 0 F ′(Ū)54 2ρ̄v̄ 0 F ′(Ū)57

0 F ′(Ū)62 F ′(Ū)63 0 0 ρ̄v̄ 0

F ′(Ū)71 0 0 F ′(Ū)74 F ′(Ū)75 0 F ′(Ū)77




, (A 30)

where

F ′(Ū)51 = ρ0(v̄)2 − ∂σ 11

∂g1
1

∣∣∣∣
p

, F ′(Ū)54 = ρ̄(v̄)2 − ∂σ 11

∂g2
2

∣∣∣∣
p

, F ′(Ū)57 = − ∂σ 11

∂p

∣∣∣∣
gγ

k

,

(A 31)

F ′(Ū)62 = − ∂σ 21

∂g1
2

∣∣∣∣
p

, F ′(Ū)63 = − ∂σ 21

∂g2
1

∣∣∣∣
p

, (A 32)

F ′(Ū)71 = ρ0ε̄kineticv̄ +
∂(ρε)

∂g1
1

∣∣∣∣
p

v̄ − v̄
∂σ 11

∂g1
1

∣∣∣∣
p

, (A 33)

F ′(Ū)74 = ρ̄ε̄kineticv̄ +
∂(ρε)

∂g2
2

∣∣∣∣
p

v̄ − v̄
∂σ 11

∂g2
2

∣∣∣∣
p

, (A 34)

F ′(Ū)75 = ρ̄(v̄)2 + ρ̄ē − σ̄ 11, F ′(Ū)77 =
∂(ρε)

∂p

∣∣∣∣
gγ

k

v̄ − v̄
∂σ 11

∂p

∣∣∣∣
gγ

k

. (A 35)
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